![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcvd | Structured version Visualization version GIF version |
Description: If 𝑥 is disjoint from 𝐴, then 𝑥 is not free in 𝐴. (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfcvd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnfc 2879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-ex 1775 df-nf 1779 df-nfc 2881 |
This theorem is referenced by: nfeld 2910 nfraldwOLD 3314 ralcom2 3369 nfreuwOLD 3418 nfrmowOLD 3419 issetft 3484 vtocldOLD 3545 sbcralt 3863 sbcrext 3864 csbiedOLD 3929 csbie2t 3931 sbcco3gw 4418 sbcco3g 4423 csbco3g 4424 dfnfc2 4927 nfdisjw 5119 eusvnfb 5387 eusv2i 5388 dfid3 5573 iota2d 6530 iota2 6531 fmptcof 7133 nfriotadw 7378 riotaeqimp 7397 riota5f 7399 riota5 7400 oprabid 7446 opiota 8057 fmpoco 8094 nfttrcld 9727 axrepndlem1 10609 axrepndlem2 10610 axunnd 10613 axpowndlem2 10615 axpowndlem3 10616 axpowndlem4 10617 axpownd 10618 axregndlem2 10620 axinfndlem1 10622 axinfnd 10623 axacndlem4 10627 axacndlem5 10628 axacnd 10629 nfnegd 11479 prodsn 15932 fprodeq0g 15964 bpolylem 16018 pcmpt 16854 chfacfpmmulfsupp 22758 elmptrab 23724 dvfsumrlim3 25961 itgsubstlem 25976 itgsubst 25977 ifeqeqx 32326 disjunsn 32377 bj-elgab 36411 bj-gabima 36412 wl-issetft 37043 unirep 37181 riotasv2d 38423 cdleme31so 39846 cdleme31se 39849 cdleme31sc 39851 cdleme31sde 39852 cdleme31sn2 39856 cdlemeg47rv2 39977 cdlemk41 40387 mapdheq 41195 hdmap1eq 41268 hdmapval2lem 41298 monotuz 42356 oddcomabszz 42359 mnringvald 43639 nfxnegd 44817 fprodsplit1 44975 dvnmul 45325 sge0sn 45761 hoidmvlelem3 45979 |
Copyright terms: Public domain | W3C validator |