![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eusv2i | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2578 | . . 3 ⊢ Ⅎ𝑦∃!𝑦∀𝑥 𝑦 = 𝐴 | |
2 | nfcvd 2900 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝑦) | |
3 | eusvnf 5386 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
4 | 2, 3 | nfeqd 2909 | . . . . 5 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
5 | 4 | nfrd 1786 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
6 | 19.2 1973 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 5, 6 | impbid1 224 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴)) |
8 | 1, 7 | eubid 2577 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴)) |
9 | 8 | ibir 268 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 = wceq 1534 ∃wex 1774 ∃!weu 2558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-nul 4319 |
This theorem is referenced by: eusv2nf 5389 |
Copyright terms: Public domain | W3C validator |