MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdm Structured version   Visualization version   GIF version

Theorem nfdm 5953
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1 𝑥𝐴
Assertion
Ref Expression
nfdm 𝑥dom 𝐴

Proof of Theorem nfdm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5688 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
2 nfcv 2899 . . . . 5 𝑥𝑦
3 nfrn.1 . . . . 5 𝑥𝐴
4 nfcv 2899 . . . . 5 𝑥𝑧
52, 3, 4nfbr 5195 . . . 4 𝑥 𝑦𝐴𝑧
65nfex 2313 . . 3 𝑥𝑧 𝑦𝐴𝑧
76nfab 2905 . 2 𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
81, 7nfcxfr 2897 1 𝑥dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  wex 1774  {cab 2705  wnfc 2879   class class class wbr 5148  dom cdm 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-dm 5688
This theorem is referenced by:  nfrn  5954  dmiin  5955  nffn  6653  nosupbnd2  27648  noinfbnd2  27663  funimass4f  32421  bnj1398  34665  bnj1491  34688  fnlimcnv  45055  fnlimfvre  45062  fnlimabslt  45067  lmbr3  45135  itgsinexplem1  45342  fourierdlem16  45511  fourierdlem21  45516  fourierdlem22  45517  fourierdlem68  45562  fourierdlem80  45574  fourierdlem103  45597  fourierdlem104  45598  issmff  46122  issmfdf  46125  smfpimltmpt  46134  smfpimltxr  46135  smfpimltxrmptf  46146  smfpreimagtf  46156  smflim  46165  smfpimgtxr  46168  smfpimgtmpt  46169  smfpimgtxrmptf  46172  smflim2  46194  smfpimcc  46196  smfsup  46202  smfsupmpt  46203  smfsupxr  46204  smfinflem  46205  smfinf  46206  smfinfmpt  46207  smflimsup  46216  smfliminf  46219  adddmmbl2  46222  muldmmbl2  46224  smfpimne2  46228  smfdivdmmbl2  46229  fsupdm  46230  finfdm  46234  nfdfat  46507
  Copyright terms: Public domain W3C validator
OSZAR »