MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecs Structured version   Visualization version   GIF version

Theorem nfwrecs 8316
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypotheses
Ref Expression
nfwrecs.1 𝑥𝑅
nfwrecs.2 𝑥𝐴
nfwrecs.3 𝑥𝐹
Assertion
Ref Expression
nfwrecs 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecs
StepHypRef Expression
1 df-wrecs 8312 . 2 wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
2 nfwrecs.1 . . 3 𝑥𝑅
3 nfwrecs.2 . . 3 𝑥𝐴
4 nfwrecs.3 . . . 4 𝑥𝐹
5 nfcv 2899 . . . 4 𝑥2nd
64, 5nfco 5863 . . 3 𝑥(𝐹 ∘ 2nd )
72, 3, 6nffrecs 8283 . 2 𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
81, 7nfcxfr 2897 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  ccom 5677  2nd c2nd 7987  frecscfrecs 8280  wrecscwrecs 8311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-xp 5679  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-iota 6495  df-fv 6551  df-ov 7418  df-frecs 8281  df-wrecs 8312
This theorem is referenced by:  nfrecs  8390
  Copyright terms: Public domain W3C validator
OSZAR »