![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfwrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-ordered recursive function generator. (Contributed by Scott Fenton, 9-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
nfwrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nfwrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nfwrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfwrecs | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8312 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | nfwrecs.1 | . . 3 ⊢ Ⅎ𝑥𝑅 | |
3 | nfwrecs.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | nfwrecs.3 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥2nd | |
6 | 4, 5 | nfco 5863 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ 2nd ) |
7 | 2, 3, 6 | nffrecs 8283 | . 2 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
8 | 1, 7 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2879 ∘ ccom 5677 2nd c2nd 7987 frecscfrecs 8280 wrecscwrecs 8311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-xp 5679 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-iota 6495 df-fv 6551 df-ov 7418 df-frecs 8281 df-wrecs 8312 |
This theorem is referenced by: nfrecs 8390 |
Copyright terms: Public domain | W3C validator |