Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucwordi Structured version   Visualization version   GIF version

Theorem onsucwordi 42748
Description: The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
onsucwordi ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))

Proof of Theorem onsucwordi
StepHypRef Expression
1 eloni 6384 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6384 . . 3 (𝐵 ∈ On → Ord 𝐵)
3 ordsucsssuc 7832 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
41, 2, 3syl2an 594 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝐵))
54biimpd 228 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wss 3949  Ord word 6373  Oncon0 6374  suc csuc 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377  df-on 6378  df-suc 6380
This theorem is referenced by:  onsucunipr  42832
  Copyright terms: Public domain W3C validator
OSZAR »