MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabv Structured version   Visualization version   GIF version

Theorem oprabv 7475
Description: If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
Assertion
Ref Expression
oprabv (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem oprabv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 reloprab 7474 . . 3 Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
21brrelex12i 5728 . 2 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V))
3 df-br 5144 . . . . 5 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 ↔ ⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
4 opex 5461 . . . . . . . . 9 𝑋, 𝑌⟩ ∈ V
5 nfcv 2899 . . . . . . . . . . . . . 14 𝑤𝑋, 𝑌
65nfeq1 2914 . . . . . . . . . . . . 13 𝑤𝑋, 𝑌⟩ = ⟨𝑥, 𝑦
7 nfv 1910 . . . . . . . . . . . . 13 𝑤𝜑
86, 7nfan 1895 . . . . . . . . . . . 12 𝑤(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
98nfex 2313 . . . . . . . . . . 11 𝑤𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
109nfex 2313 . . . . . . . . . 10 𝑤𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
11 nfcv 2899 . . . . . . . . . . . . . 14 𝑧𝑋, 𝑌
1211nfeq1 2914 . . . . . . . . . . . . 13 𝑧𝑋, 𝑌⟩ = ⟨𝑥, 𝑦
13 nfsbc1v 3795 . . . . . . . . . . . . 13 𝑧[𝑍 / 𝑧]𝜑
1412, 13nfan 1895 . . . . . . . . . . . 12 𝑧(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
1514nfex 2313 . . . . . . . . . . 11 𝑧𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
1615nfex 2313 . . . . . . . . . 10 𝑧𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)
17 eqeq1 2732 . . . . . . . . . . . 12 (𝑤 = ⟨𝑋, 𝑌⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩))
1817anbi1d 630 . . . . . . . . . . 11 (𝑤 = ⟨𝑋, 𝑌⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
19182exbidv 1920 . . . . . . . . . 10 (𝑤 = ⟨𝑋, 𝑌⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
20 sbceq1a 3786 . . . . . . . . . . . 12 (𝑧 = 𝑍 → (𝜑[𝑍 / 𝑧]𝜑))
2120anbi2d 629 . . . . . . . . . . 11 (𝑧 = 𝑍 → ((⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
22212exbidv 1920 . . . . . . . . . 10 (𝑧 = 𝑍 → (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
2310, 16, 19, 22opelopabgf 5537 . . . . . . . . 9 ((⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V) → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
244, 23mpan 689 . . . . . . . 8 (𝑍 ∈ V → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ↔ ∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑)))
25 eqcom 2735 . . . . . . . . . . . . . . 15 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
26 vex 3474 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
27 vex 3474 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
2826, 27opth 5473 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑌⟩ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
2925, 28bitri 275 . . . . . . . . . . . . . 14 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝑋𝑦 = 𝑌))
30 eqvisset 3488 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋𝑋 ∈ V)
31 eqvisset 3488 . . . . . . . . . . . . . . 15 (𝑦 = 𝑌𝑌 ∈ V)
3230, 31anim12i 612 . . . . . . . . . . . . . 14 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3329, 32sylbi 216 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3433adantr 480 . . . . . . . . . . . 12 ((⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3534exlimivv 1928 . . . . . . . . . . 11 (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
3635anim1i 614 . . . . . . . . . 10 ((∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) ∧ 𝑍 ∈ V) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ V))
37 df-3an 1087 . . . . . . . . . 10 ((𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑍 ∈ V))
3836, 37sylibr 233 . . . . . . . . 9 ((∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) ∧ 𝑍 ∈ V) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
3938expcom 413 . . . . . . . 8 (𝑍 ∈ V → (∃𝑥𝑦(⟨𝑋, 𝑌⟩ = ⟨𝑥, 𝑦⟩ ∧ [𝑍 / 𝑧]𝜑) → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4024, 39sylbid 239 . . . . . . 7 (𝑍 ∈ V → (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4140com12 32 . . . . . 6 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
42 dfoprab2 7473 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4341, 42eleq2s 2847 . . . . 5 (⟨⟨𝑋, 𝑌⟩, 𝑍⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
443, 43sylbi 216 . . . 4 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑍 ∈ V → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4544com12 32 . . 3 (𝑍 ∈ V → (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
4645adantl 481 . 2 ((⟨𝑋, 𝑌⟩ ∈ V ∧ 𝑍 ∈ V) → (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V)))
472, 46mpcom 38 1 (⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470  [wsbc 3775  cop 4631   class class class wbr 5143  {copab 5205  {coprab 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-oprab 7419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »