![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opres | Structured version Visualization version GIF version |
Description: Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
opres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opres | ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opres.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | opelresi 5987 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (𝐴 ∈ 𝐷 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
3 | 2 | baib 535 | 1 ⊢ (𝐴 ∈ 𝐷 → (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3470 〈cop 4630 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5205 df-xp 5678 df-res 5684 |
This theorem is referenced by: resieq 5990 2elresin 6670 mdetunilem9 22515 |
Copyright terms: Public domain | W3C validator |