![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2cn | Structured version Visualization version GIF version |
Description: A theorem for complex numbers analogous the second Peano postulate peano2nn 12255. (Contributed by NM, 17-Aug-2005.) |
Ref | Expression |
---|---|
peano2cn | ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11197 | . 2 ⊢ 1 ∈ ℂ | |
2 | addcl 11221 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + 1) ∈ ℂ) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 1c1 11140 + caddc 11142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-1cn 11197 ax-addcl 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: nnsscn 12248 xp1d2m1eqxm1d2 12497 zeo 12679 zeo2 12680 zesq 14221 facndiv 14280 faclbnd 14282 faclbnd6 14291 iseralt 15664 bcxmas 15814 trireciplem 15841 fallfacfwd 16013 bpolydiflem 16031 fsumcube 16037 odd2np1 16318 srgbinomlem3 20168 srgbinomlem4 20169 pcoass 24964 dvfsumabs 25970 ply1divex 26085 qaa 26271 aaliou3lem2 26291 abssinper 26468 advlogexp 26602 atantayl2 26883 basellem3 27028 basellem8 27033 lgseisenlem1 27321 lgsquadlem1 27326 pntrsumo1 27511 crctcshwlkn0lem6 29639 clwlkclwwlklem3 29824 fwddifnp1 35761 ltflcei 37081 itg2addnclem3 37146 pell14qrgapw 42296 binomcxplemrat 43787 sumnnodd 45018 dirkertrigeqlem1 45486 dirkertrigeqlem3 45488 dirkertrigeq 45489 fourierswlem 45618 fmtnorec4 46889 lighneallem4b 46949 ackval1 47754 ackval2 47755 |
Copyright terms: Public domain | W3C validator |