MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleq Structured version   Visualization version   GIF version

Theorem preleq 9633
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) (Revised by AV, 15-Jun-2022.)
Hypothesis
Ref Expression
preleq.b 𝐵 ∈ V
Assertion
Ref Expression
preleq (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleq
StepHypRef Expression
1 preleq.b . 2 𝐵 ∈ V
2 preleqg 9632 . 2 (((𝐴𝐵𝐵 ∈ V ∧ 𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
31, 2mp3anl2 1453 1 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  {cpr 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-reg 9609
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-eprel 5576  df-fr 5627
This theorem is referenced by:  opthreg  9635  dfac2b  10147
  Copyright terms: Public domain W3C validator
OSZAR »