![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4737 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | prprc1 4770 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
3 | 1, 2 | eqtrid 2777 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3463 {csn 4629 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-dif 3948 df-un 3950 df-nul 4324 df-sn 4630 df-pr 4632 |
This theorem is referenced by: tpprceq3 4808 elpreqprlem 4867 prex 5433 indislem 22940 1to2vfriswmgr 30152 indispconn 34931 bj-prmoore 36681 elsprel 46894 |
Copyright terms: Public domain | W3C validator |