![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qsss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020.) |
Ref | Expression |
---|---|
qsss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4051 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶 → ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶)) | |
2 | 1 | ss2abdv 4060 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} ⊆ {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶}) |
3 | df-qs 8737 | . 2 ⊢ (𝐴 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝐶} | |
4 | df-qs 8737 | . 2 ⊢ (𝐵 / 𝐶) = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 = [𝑥]𝐶} | |
5 | 2, 3, 4 | 3sstr4g 4027 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 / 𝐶) ⊆ (𝐵 / 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 {cab 2705 ∃wrex 3067 ⊆ wss 3949 [cec 8729 / cqs 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rex 3068 df-v 3475 df-in 3956 df-ss 3966 df-qs 8737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |