![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3sstr4g | Structured version Visualization version GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | sseq12i 4010 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | sylibr 233 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: rabss2 4073 unss2 4181 sslin 4235 intss 4972 ssopab2 5548 xpss12 5693 coss1 5858 coss2 5859 cnvss 5875 rnss 5941 ssres 6012 ssres2 6013 imass1 6105 imass2 6106 predpredss 6312 predrelss 6343 ssoprab2 7488 ressuppss 8187 tposss 8232 onovuni 8362 ss2ixp 8928 fodomfi 9349 coss12d 14951 isumsplit 15818 isumrpcl 15821 cvgrat 15861 gsumzf1o 19866 gsumzmhm 19891 gsumzinv 19899 fldc 20671 dsmmsubg 21676 qustgpopn 24023 metnrmlem2 24775 ovolsslem 25412 uniioombllem3 25513 ulmres 26323 xrlimcnp 26899 pntlemq 27533 cusgredg 29236 sspba 30536 shlej2i 31188 chpssati 32172 iunrnmptss 32355 mptssALT 32460 pmtrcnelor 32814 rspectopn 33468 zarmxt1 33481 bnj1408 34667 subfacp1lem6 34795 mthmpps 35192 bj-gabss 36413 qsss1 37761 cossss 37897 disjdmqscossss 38275 aomclem4 42481 cotrclrcl 43172 ovnsslelem 45948 uspgrimprop 47171 fldcALTV 47394 |
Copyright terms: Public domain | W3C validator |