![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imass2 | Structured version Visualization version GIF version |
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
imass2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 6013 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵)) | |
2 | rnss 5941 | . . 3 ⊢ ((𝐶 ↾ 𝐴) ⊆ (𝐶 ↾ 𝐵) → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐶 ↾ 𝐴) ⊆ ran (𝐶 ↾ 𝐵)) |
4 | df-ima 5691 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
5 | df-ima 5691 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
6 | 3, 4, 5 | 3sstr4g 4025 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 “ 𝐴) ⊆ (𝐶 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3947 ran crn 5679 ↾ cres 5680 “ cima 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 |
This theorem is referenced by: funimass1 6635 funimass2 6636 fvimacnv 7062 fnfvimad 7246 f1imass 7274 ecinxp 8810 sbthlem1 9107 sbthlem2 9108 php3 9236 php3OLD 9248 ordtypelem2 9542 tcrank 9907 limsupgord 15448 isercoll 15646 isacs1i 17636 gsumzf1o 19866 dprdres 19984 dprd2da 19998 dmdprdsplit2lem 20001 lmhmlsp 20933 f1lindf 21755 iscnp4 23166 cnpco 23170 cncls2i 23173 cnntri 23174 cnrest2 23189 cnpresti 23191 cnprest 23192 1stcfb 23348 xkococnlem 23562 qtopval2 23599 tgqtop 23615 qtoprest 23620 kqdisj 23635 regr1lem 23642 kqreglem1 23644 kqreglem2 23645 kqnrmlem1 23646 kqnrmlem2 23647 nrmhmph 23697 fbasrn 23787 elfm2 23851 fmfnfmlem1 23857 fmco 23864 flffbas 23898 cnpflf2 23903 cnextcn 23970 metcnp3 24448 metustto 24461 cfilucfil 24467 uniioombllem3 25513 dyadmbllem 25527 mbfconstlem 25555 i1fima2 25607 itg2gt0 25689 ellimc3 25807 limcflf 25809 limcresi 25813 limciun 25822 lhop 25948 ig1peu 26108 ig1pdvds 26113 psercnlem2 26360 dvloglem 26581 efopn 26591 noetalem1 27673 madess 27802 cofcut1 27839 negsproplem2 27940 fnpreimac 32456 fsuppinisegfi 32467 gsumpart 32769 txomap 33435 zarcmplem 33482 tpr2rico 33513 pthhashvtx 34737 cvmsss2 34884 cvmopnlem 34888 cvmliftmolem1 34891 cvmliftlem15 34908 cvmlift2lem9 34921 imadifss 37068 poimirlem1 37094 poimirlem2 37095 poimirlem3 37096 poimirlem15 37108 poimirlem30 37123 dvtan 37143 heibor1lem 37282 aks6d1c2 41601 aks6d1c6lem3 41644 aks6d1c6lem5 41649 isnumbasabl 42530 isnumbasgrp 42531 dfacbasgrp 42532 trclimalb2 43156 frege81d 43177 imass2d 44638 limccog 45008 liminfgord 45142 |
Copyright terms: Public domain | W3C validator |