MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfconstlem Structured version   Visualization version   GIF version

Theorem mbfconstlem 25569
Description: Lemma for mbfconst 25575 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbfconstlem ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)

Proof of Theorem mbfconstlem
StepHypRef Expression
1 cnvimass 6085 . . . . . 6 ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶})
21a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ⊆ dom (𝐴 × {𝐶}))
3 cnvimarndm 6086 . . . . . 6 ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) = dom (𝐴 × {𝐶})
4 fconst6g 6786 . . . . . . . 8 (𝐶𝐵 → (𝐴 × {𝐶}):𝐴𝐵)
54adantl 481 . . . . . . 7 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴𝐵)
6 frn 6729 . . . . . . 7 ((𝐴 × {𝐶}):𝐴𝐵 → ran (𝐴 × {𝐶}) ⊆ 𝐵)
7 imass2 6106 . . . . . . 7 (ran (𝐴 × {𝐶}) ⊆ 𝐵 → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
85, 6, 73syl 18 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ ran (𝐴 × {𝐶})) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
93, 8eqsstrrid 4029 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) ⊆ ((𝐴 × {𝐶}) “ 𝐵))
102, 9eqssd 3997 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = dom (𝐴 × {𝐶}))
11 fconstg 6784 . . . . . 6 (𝐶 ∈ ℝ → (𝐴 × {𝐶}):𝐴⟶{𝐶})
1211ad2antlr 726 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
1312fdmd 6733 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → dom (𝐴 × {𝐶}) = 𝐴)
1410, 13eqtrd 2768 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = 𝐴)
15 simpll 766 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → 𝐴 ∈ dom vol)
1614, 15eqeltrd 2829 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
1711ad2antlr 726 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐴 × {𝐶}):𝐴⟶{𝐶})
18 incom 4201 . . . . 5 ({𝐶} ∩ 𝐵) = (𝐵 ∩ {𝐶})
19 simpr 484 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐵)
20 disjsn 4716 . . . . . 6 ((𝐵 ∩ {𝐶}) = ∅ ↔ ¬ 𝐶𝐵)
2119, 20sylibr 233 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → (𝐵 ∩ {𝐶}) = ∅)
2218, 21eqtrid 2780 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ({𝐶} ∩ 𝐵) = ∅)
23 fimacnvdisj 6775 . . . 4 (((𝐴 × {𝐶}):𝐴⟶{𝐶} ∧ ({𝐶} ∩ 𝐵) = ∅) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
2417, 22, 23syl2anc 583 . . 3 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) = ∅)
25 0mbl 25481 . . 3 ∅ ∈ dom vol
2624, 25eqeltrdi 2837 . 2 (((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) ∧ ¬ 𝐶𝐵) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
2716, 26pm2.61dan 812 1 ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → ((𝐴 × {𝐶}) “ 𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  cin 3946  wss 3947  c0 4323  {csn 4629   × cxp 5676  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  wf 6544  cr 11138  volcvol 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-oi 9534  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-xadd 13126  df-ioo 13361  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-xmet 21272  df-met 21273  df-ovol 25406  df-vol 25407
This theorem is referenced by:  ismbf  25570  mbfconst  25575
  Copyright terms: Public domain W3C validator
OSZAR »