MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvdisj Structured version   Visualization version   GIF version

Theorem fimacnvdisj 6770
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 5683 . . . 4 ran 𝐹 = dom 𝐹
2 frn 6724 . . . . 5 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
32adantr 479 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → ran 𝐹𝐵)
41, 3eqsstrrid 4022 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → dom 𝐹𝐵)
5 ssdisj 4455 . . 3 ((dom 𝐹𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
64, 5sylancom 586 . 2 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
7 imadisj 6078 . 2 ((𝐹𝐶) = ∅ ↔ (dom 𝐹𝐶) = ∅)
86, 7sylibr 233 1 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  cin 3938  wss 3939  c0 4318  ccnv 5671  dom cdm 5672  ran crn 5673  cima 5675  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-f 6547
This theorem is referenced by:  vdwmc2  16947  gsumval3a  19862  psrbag0  22013  mbfconstlem  25574  itg1val2  25631  ofpreima2  32497
  Copyright terms: Public domain W3C validator
OSZAR »