MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val2 Structured version   Visualization version   GIF version

Theorem itg1val2 25657
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1val2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem itg1val2
StepHypRef Expression
1 itg1val 25656 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
21adantr 479 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
3 simpr2 1192 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (ran 𝐹 ∖ {0}) ⊆ 𝐴)
43sselda 3976 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
5 simpr3 1193 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
65sselda 3976 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ (ℝ ∖ {0}))
7 eldifi 4123 . . . . . . 7 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
86, 7syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 i1fima2sn 25653 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
109adantlr 713 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
116, 10syldan 589 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
128, 11remulcld 11276 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
1312recnd 11274 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
144, 13syldan 589 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
15 i1ff 25649 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
1615ad2antrr 724 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ℝ)
17 ffrn 6736 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → 𝐹:ℝ⟶ran 𝐹)
1816, 17syl 17 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ran 𝐹)
19 eldifn 4124 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
2019adantl 480 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
21 eldif 3954 . . . . . . . . . . 11 (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0}))
22 simplr3 1214 . . . . . . . . . . . . . . 15 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
2322ssdifssd 4139 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐴 ∖ (ran 𝐹 ∖ {0})) ⊆ (ℝ ∖ {0}))
24 simpr 483 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})))
2523, 24sseldd 3977 . . . . . . . . . . . . 13 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (ℝ ∖ {0}))
26 eldifn 4124 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ∖ {0}) → ¬ 𝑥 ∈ {0})
2725, 26syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ {0})
2827biantrud 530 . . . . . . . . . . 11 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ ran 𝐹 ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0})))
2921, 28bitr4id 289 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ 𝑥 ∈ ran 𝐹))
3020, 29mtbid 323 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ ran 𝐹)
31 disjsn 4717 . . . . . . . . 9 ((ran 𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹)
3230, 31sylibr 233 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (ran 𝐹 ∩ {𝑥}) = ∅)
33 fimacnvdisj 6775 . . . . . . . 8 ((𝐹:ℝ⟶ran 𝐹 ∧ (ran 𝐹 ∩ {𝑥}) = ∅) → (𝐹 “ {𝑥}) = ∅)
3418, 32, 33syl2anc 582 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐹 “ {𝑥}) = ∅)
3534fveq2d 6900 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = (vol‘∅))
36 0mbl 25512 . . . . . . . 8 ∅ ∈ dom vol
37 mblvol 25503 . . . . . . . 8 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
3836, 37ax-mp 5 . . . . . . 7 (vol‘∅) = (vol*‘∅)
39 ovol0 25466 . . . . . . 7 (vol*‘∅) = 0
4038, 39eqtri 2753 . . . . . 6 (vol‘∅) = 0
4135, 40eqtrdi 2781 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = 0)
4241oveq2d 7435 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = (𝑥 · 0))
43 eldifi 4123 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
4443, 8sylan2 591 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℝ)
4544recnd 11274 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℂ)
4645mul01d 11445 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · 0) = 0)
4742, 46eqtrd 2765 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = 0)
48 simpr1 1191 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ∈ Fin)
493, 14, 47, 48fsumss 15707 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
502, 49eqtrd 2765 1 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cdif 3941  cin 3943  wss 3944  c0 4322  {csn 4630  ccnv 5677  dom cdm 5678  ran crn 5679  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11138  cr 11139  0cc0 11140   · cmul 11145  Σcsu 15668  vol*covol 25435  volcvol 25436  1citg1 25588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xadd 13128  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-xmet 21289  df-met 21290  df-ovol 25437  df-vol 25438  df-mbf 25592  df-itg1 25593
This theorem is referenced by:  itg1addlem4  25672  itg1addlem4OLD  25673  itg1climres  25688
  Copyright terms: Public domain W3C validator
OSZAR »