![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossss | Structured version Visualization version GIF version |
Description: Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
Ref | Expression |
---|---|
cossss | ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5192 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
2 | ssbr 5192 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑧 → 𝑥𝐵𝑧)) | |
3 | 1, 2 | anim12d 608 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → (𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
4 | 3 | eximdv 1913 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧) → ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧))) |
5 | 4 | ssopab2dv 5553 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} ⊆ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)}) |
6 | df-coss 37883 | . 2 ⊢ ≀ 𝐴 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐴𝑦 ∧ 𝑥𝐴𝑧)} | |
7 | df-coss 37883 | . 2 ⊢ ≀ 𝐵 = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑥𝐵𝑦 ∧ 𝑥𝐵𝑧)} | |
8 | 5, 6, 7 | 3sstr4g 4025 | 1 ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 ⊆ wss 3947 class class class wbr 5148 {copab 5210 ≀ ccoss 37648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-br 5149 df-opab 5211 df-coss 37883 |
This theorem is referenced by: funALTVss 38171 |
Copyright terms: Public domain | W3C validator |