MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2dv Structured version   Visualization version   GIF version

Theorem ssopab2dv 5553
Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ssopab2dv (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimivv 1924 . 2 (𝜑 → ∀𝑥𝑦(𝜓𝜒))
3 ssopab2 5548 . 2 (∀𝑥𝑦(𝜓𝜒) → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
42, 3syl 17 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wss 3947  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964  df-opab 5211
This theorem is referenced by:  xpss12  5693  coss1  5858  coss2  5859  cnvss  5875  aceq3lem  10144  coss12d  14952  shftfval  15050  sslm  23216  ulmval  26329  mptssALT  32474  fpwrelmap  32528  cossss  37897  dicssdvh  40659  rfovcnvf1od  43434
  Copyright terms: Public domain W3C validator
OSZAR »