![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqopab2b | Structured version Visualization version GIF version |
Description: Equivalence of ordered pair abstraction equality and biconditional. Usage of this theorem is discouraged because it depends on ax-13 2366. Use the weaker eqopab2bw 5552 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eqopab2b | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssopab2b 5553 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) | |
2 | ssopab2b 5553 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∀𝑦(𝜓 → 𝜑)) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ (({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ∧ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑}) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) |
4 | eqss 3995 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ∧ {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
5 | 2albiim 1885 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} = {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ⊆ wss 3947 {copab 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2366 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5213 |
This theorem is referenced by: opabbi 37643 |
Copyright terms: Public domain | W3C validator |