MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi2dva Structured version   Visualization version   GIF version

Theorem rabbi2dva 4216
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rabbi2dva (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3952 . 2 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
2 rabbi2dva.1 . . 3 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
32rabbidva 3425 . 2 (𝜑 → {𝑥𝐴𝑥𝐵} = {𝑥𝐴𝜓})
41, 3eqtrid 2777 1 (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  cin 3943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-rab 3419  df-in 3951
This theorem is referenced by:  fndmdif  7050  bitsshft  16453  sylow3lem2  19595  leordtvallem1  23158  leordtvallem2  23159  ordtt1  23327  xkoccn  23567  txcnmpt  23572  xkopt  23603  ordthmeolem  23749  qustgphaus  24071  itg2monolem1  25724  lhop1  25991  efopn  26637  dirith  27507  pjvec  31578  pjocvec  31579  neibastop3  35977  diarnN  40732
  Copyright terms: Public domain W3C validator
OSZAR »