![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leordtvallem1 | Structured version Visualization version GIF version |
Description: Lemma for leordtval 23148. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
leordtval.1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) |
Ref | Expression |
---|---|
leordtvallem1 | ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leordtval.1 | . 2 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) | |
2 | iocssxr 13440 | . . . . . 6 ⊢ (𝑥(,]+∞) ⊆ ℝ* | |
3 | sseqin2 4214 | . . . . . 6 ⊢ ((𝑥(,]+∞) ⊆ ℝ* ↔ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞)) | |
4 | 2, 3 | mpbi 229 | . . . . 5 ⊢ (ℝ* ∩ (𝑥(,]+∞)) = (𝑥(,]+∞) |
5 | simpl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*) | |
6 | pnfxr 11298 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
7 | elioc1 13398 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) | |
8 | 5, 6, 7 | sylancl 584 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
9 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*) | |
10 | pnfge 13142 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℝ* → 𝑦 ≤ +∞) | |
11 | 9, 10 | jccir 520 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞)) |
12 | 11 | biantrurd 531 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦))) |
13 | 3anan32 1094 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞) ↔ ((𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞) ∧ 𝑥 < 𝑦)) | |
14 | 12, 13 | bitr4di 288 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ (𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞))) |
15 | xrltnle 11311 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) | |
16 | 8, 14, 15 | 3bitr2d 306 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑦 ∈ (𝑥(,]+∞) ↔ ¬ 𝑦 ≤ 𝑥)) |
17 | 16 | rabbi2dva 4217 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (ℝ* ∩ (𝑥(,]+∞)) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
18 | 4, 17 | eqtr3id 2779 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥(,]+∞) = {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
19 | 18 | mpteq2ia 5251 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
20 | 19 | rneqi 5938 | . 2 ⊢ ran (𝑥 ∈ ℝ* ↦ (𝑥(,]+∞)) = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
21 | 1, 20 | eqtri 2753 | 1 ⊢ 𝐴 = ran (𝑥 ∈ ℝ* ↦ {𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {crab 3419 ∩ cin 3944 ⊆ wss 3945 class class class wbr 5148 ↦ cmpt 5231 ran crn 5678 (class class class)co 7417 +∞cpnf 11275 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 (,]cioc 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioc 13361 |
This theorem is referenced by: leordtval2 23147 leordtval 23148 |
Copyright terms: Public domain | W3C validator |