![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relen | Structured version Visualization version GIF version |
Description: Equinumerosity is a relation. (Contributed by NM, 28-Mar-1998.) |
Ref | Expression |
---|---|
relen | ⊢ Rel ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-en 8964 | . 2 ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} | |
2 | 1 | relopabiv 5822 | 1 ⊢ Rel ≈ |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1774 Rel wrel 5683 –1-1-onto→wf1o 6547 ≈ cen 8960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-opab 5211 df-xp 5684 df-rel 5685 df-en 8964 |
This theorem is referenced by: encv 8971 isfi 8996 enssdom 8997 ener 9021 en1unielOLD 9053 enfixsn 9105 sbthcl 9119 xpen 9164 pwen 9174 php3OLD 9248 f1finf1oOLD 9296 mapfien2 9432 isnum2 9968 inffien 10086 djuen 10192 djuenun 10193 cdainflem 10210 djulepw 10215 infmap2 10241 fin4i 10321 fin4en1 10332 isfin4p1 10338 enfin2i 10344 fin45 10415 axcc3 10461 engch 10651 hargch 10696 hasheni 14339 pmtrfv 19406 frgpcyg 21506 lbslcic 21774 phpreu 37077 ctbnfien 42238 |
Copyright terms: Public domain | W3C validator |