MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hargch Structured version   Visualization version   GIF version

Theorem hargch 10690
Description: If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10696. (Contributed by Mario Carneiro, 2-Jun-2015.)
Assertion
Ref Expression
hargch ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)

Proof of Theorem hargch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 harcl 9576 . . . . . . . . . . . . . 14 (har‘𝐴) ∈ On
2 sdomdom 8994 . . . . . . . . . . . . . 14 (𝑥 ≺ (har‘𝐴) → 𝑥 ≼ (har‘𝐴))
3 ondomen 10054 . . . . . . . . . . . . . 14 (((har‘𝐴) ∈ On ∧ 𝑥 ≼ (har‘𝐴)) → 𝑥 ∈ dom card)
41, 2, 3sylancr 586 . . . . . . . . . . . . 13 (𝑥 ≺ (har‘𝐴) → 𝑥 ∈ dom card)
5 onenon 9966 . . . . . . . . . . . . . 14 ((har‘𝐴) ∈ On → (har‘𝐴) ∈ dom card)
61, 5ax-mp 5 . . . . . . . . . . . . 13 (har‘𝐴) ∈ dom card
7 cardsdom2 10005 . . . . . . . . . . . . 13 ((𝑥 ∈ dom card ∧ (har‘𝐴) ∈ dom card) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
84, 6, 7sylancl 585 . . . . . . . . . . . 12 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ∈ (card‘(har‘𝐴)) ↔ 𝑥 ≺ (har‘𝐴)))
98ibir 268 . . . . . . . . . . 11 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (card‘(har‘𝐴)))
10 harcard 9995 . . . . . . . . . . 11 (card‘(har‘𝐴)) = (har‘𝐴)
119, 10eleqtrdi 2839 . . . . . . . . . 10 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ∈ (har‘𝐴))
12 elharval 9578 . . . . . . . . . . 11 ((card‘𝑥) ∈ (har‘𝐴) ↔ ((card‘𝑥) ∈ On ∧ (card‘𝑥) ≼ 𝐴))
1312simprbi 496 . . . . . . . . . 10 ((card‘𝑥) ∈ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
1411, 13syl 17 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → (card‘𝑥) ≼ 𝐴)
15 cardid2 9970 . . . . . . . . . 10 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
16 domen1 9137 . . . . . . . . . 10 ((card‘𝑥) ≈ 𝑥 → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
174, 15, 163syl 18 . . . . . . . . 9 (𝑥 ≺ (har‘𝐴) → ((card‘𝑥) ≼ 𝐴𝑥𝐴))
1814, 17mpbid 231 . . . . . . . 8 (𝑥 ≺ (har‘𝐴) → 𝑥𝐴)
19 domnsym 9117 . . . . . . . 8 (𝑥𝐴 → ¬ 𝐴𝑥)
2018, 19syl 17 . . . . . . 7 (𝑥 ≺ (har‘𝐴) → ¬ 𝐴𝑥)
2120con2i 139 . . . . . 6 (𝐴𝑥 → ¬ 𝑥 ≺ (har‘𝐴))
22 sdomen2 9140 . . . . . . 7 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝑥 ≺ (har‘𝐴) ↔ 𝑥 ≺ 𝒫 𝐴))
2322notbid 318 . . . . . 6 ((har‘𝐴) ≈ 𝒫 𝐴 → (¬ 𝑥 ≺ (har‘𝐴) ↔ ¬ 𝑥 ≺ 𝒫 𝐴))
2421, 23imbitrid 243 . . . . 5 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴))
25 imnan 399 . . . . 5 ((𝐴𝑥 → ¬ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2624, 25sylib 217 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2726alrimiv 1923 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴 → ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
2827olcd 873 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
29 relen 8962 . . . . 5 Rel ≈
3029brrelex2i 5729 . . . 4 ((har‘𝐴) ≈ 𝒫 𝐴 → 𝒫 𝐴 ∈ V)
31 pwexb 7762 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
3230, 31sylibr 233 . . 3 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ V)
33 elgch 10639 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3432, 33syl 17 . 2 ((har‘𝐴) ≈ 𝒫 𝐴 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
3528, 34mpbird 257 1 ((har‘𝐴) ≈ 𝒫 𝐴𝐴 ∈ GCH)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  wal 1532  wcel 2099  Vcvv 3470  𝒫 cpw 4598   class class class wbr 5142  dom cdm 5672  Oncon0 6363  cfv 6542  cen 8954  cdom 8955  csdm 8956  Fincfn 8957  harchar 9573  cardccrd 9952  GCHcgch 10637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-oi 9527  df-har 9574  df-card 9956  df-gch 10638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »