![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
domen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 9020 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endomtr 9029 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
3 | 1, 2 | sylan 578 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) |
4 | endomtr 9029 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
5 | 3, 4 | impbida 799 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5143 ≈ cen 8957 ≼ cdom 8958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-er 8721 df-en 8961 df-dom 8962 |
This theorem is referenced by: unxpwdom2 9609 carddomi2 9991 djudom2 10204 djuinf 10209 djulepw 10213 pwdjudom 10237 gchpwdom 10691 hargch 10694 dis2ndc 23380 isinf2 36940 |
Copyright terms: Public domain | W3C validator |