MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domen1 Structured version   Visualization version   GIF version

Theorem domen1 9140
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.)
Assertion
Ref Expression
domen1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem domen1
StepHypRef Expression
1 ensym 9020 . . 3 (𝐴𝐵𝐵𝐴)
2 endomtr 9029 . . 3 ((𝐵𝐴𝐴𝐶) → 𝐵𝐶)
31, 2sylan 578 . 2 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
4 endomtr 9029 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
53, 4impbida 799 1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5143  cen 8957  cdom 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-er 8721  df-en 8961  df-dom 8962
This theorem is referenced by:  unxpwdom2  9609  carddomi2  9991  djudom2  10204  djuinf  10209  djulepw  10213  pwdjudom  10237  gchpwdom  10691  hargch  10694  dis2ndc  23380  isinf2  36940
  Copyright terms: Public domain W3C validator
OSZAR »