![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity and dominance. (Contributed by NM, 8-Nov-2003.) |
Ref | Expression |
---|---|
domen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 9022 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | endomtr 9031 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
3 | 1, 2 | sylan 578 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≼ 𝐶) → 𝐵 ≼ 𝐶) |
4 | endomtr 9031 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
5 | 3, 4 | impbida 799 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼ 𝐶 ↔ 𝐵 ≼ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5148 ≈ cen 8959 ≼ cdom 8960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-er 8723 df-en 8963 df-dom 8964 |
This theorem is referenced by: unxpwdom2 9611 carddomi2 9993 djudom2 10206 djuinf 10211 djulepw 10215 pwdjudom 10239 gchpwdom 10693 hargch 10696 dis2ndc 23401 isinf2 36971 |
Copyright terms: Public domain | W3C validator |