MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq1 Structured version   Visualization version   GIF version

Theorem reueq1 3411
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.) Remove usage of ax-10 2129, ax-11 2146, and ax-12 2166. (Revised by Steven Nguyen, 30-Apr-2023.) Avoid ax-8 2100. (Revised by Wolf Lammen, 12-Mar-2025.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 rexeq 3317 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
2 rmoeq1 3410 . . 3 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
31, 2anbi12d 630 . 2 (𝐴 = 𝐵 → ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑)))
4 reu5 3374 . 2 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
5 reu5 3374 . 2 (∃!𝑥𝐵 𝜑 ↔ (∃𝑥𝐵 𝜑 ∧ ∃*𝑥𝐵 𝜑))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wrex 3066  ∃!wreu 3370  ∃*wrmo 3371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-mo 2529  df-eu 2558  df-cleq 2719  df-rex 3067  df-rmo 3372  df-reu 3373
This theorem is referenced by:  reueqd  3415  lubfval  18347  glbfval  18360  uspgredg2vlem  29054  uspgredg2v  29055  isfrgr  30088  frgr1v  30099  nfrgr2v  30100  frgr3v  30103  1vwmgr  30104  3vfriswmgr  30106  isplig  30304  hdmap14lem4a  41348  hdmap14lem15  41359
  Copyright terms: Public domain W3C validator
OSZAR »