MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotabiia Structured version   Visualization version   GIF version

Theorem riotabiia 7391
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3423 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2725 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 480 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 7390 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3463  crio 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-in 3946  df-ss 3956  df-uni 4902  df-iota 6493  df-riota 7370
This theorem is referenced by:  riotaxfrd  7405  lubfval  18339  glbfval  18352  odulub  18396  oduglb  18398  cnlnadjlem5  31897  cdj3lem3  32264  cdj3lem3b  32266  lshpkrlem1  38610  cdleme25cv  39859  cdlemk35  40413
  Copyright terms: Public domain W3C validator
OSZAR »