MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotabidva Structured version   Visualization version   GIF version

Theorem riotabidva 7400
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 3435 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
riotabidva (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
21pm5.32da 577 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
32iotabidv 6535 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑥(𝑥𝐴𝜒)))
4 df-riota 7380 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
5 df-riota 7380 . 2 (𝑥𝐴 𝜒) = (℩𝑥(𝑥𝐴𝜒))
63, 4, 53eqtr4g 2792 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cio 6501  crio 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3473  df-in 3954  df-ss 3964  df-uni 4911  df-iota 6503  df-riota 7380
This theorem is referenced by:  riotabiia  7401  dfceil2  13842  cidpropd  17695  grpinvpropd  18976  mirval  28477  mirfv  28478  grpoidval  30341  adjval2  31719  riotaeqbidva  32312  xdivval  32660  toslub  32718  tosglb  32720  ringinvval  32961  glbconN  38853  glbconNOLD  38854  cdlemk33N  40386  cdlemk34  40387  cdlemkid4  40411
  Copyright terms: Public domain W3C validator
OSZAR »