MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotasbc Structured version   Visualization version   GIF version

Theorem riotasbc 7401
Description: Substitution law for descriptions. Compare iotasbc 43887. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotasbc (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)

Proof of Theorem riotasbc
StepHypRef Expression
1 rabssab 4083 . . 3 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
2 riotacl2 7399 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝐴𝜑})
31, 2sselid 3980 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
4 df-sbc 3779 . 2 ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐴 𝜑) ∈ {𝑥𝜑})
53, 4sylibr 233 1 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  {cab 2705  ∃!wreu 3372  {crab 3430  [wsbc 3778  crio 7381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-un 3954  df-in 3956  df-ss 3966  df-sn 4633  df-pr 4635  df-uni 4913  df-iota 6505  df-riota 7382
This theorem is referenced by:  riotass2  7413  riotass  7414  cjth  15090  joinlem  18382  meetlem  18396  finxpreclem4  36906  poimirlem26  37152  riotasvd  38460  lshpkrlem3  38616  tfsconcatfv  42801
  Copyright terms: Public domain W3C validator
OSZAR »