![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaeqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaeqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
riotaeqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
riotaeqbidv | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | riotabidv 7384 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) |
3 | riotaeqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | riotaeqdv 7383 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜒) = (℩𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | eqtrd 2768 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ℩crio 7381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-in 3956 df-ss 3966 df-uni 4913 df-iota 6505 df-riota 7382 |
This theorem is referenced by: dfoi 9542 oieq1 9543 oieq2 9544 ordtypecbv 9548 ordtypelem3 9551 zorn2lem1 10527 zorn2g 10534 cidfval 17663 cidval 17664 cidpropd 17697 lubfval 18349 glbfval 18362 grpinvfval 18942 grpinvfvalALT 18943 pj1fval 19656 mpfrcl 22038 evlsval 22039 q1pval 26110 ig1pval 26130 scutval 27753 mirval 28479 midf 28600 ismidb 28602 lmif 28609 islmib 28611 gidval 30342 grpoinvfval 30352 pjhfval 31226 cvmliftlem5 34932 cvmliftlem15 34941 trlfset 39665 dicffval 40679 dicfval 40680 dihffval 40735 dihfval 40736 hvmapffval 41263 hvmapfval 41264 hdmap1fval 41301 hdmapffval 41331 hdmapfval 41332 hgmapfval 41391 wessf1ornlem 44588 |
Copyright terms: Public domain | W3C validator |