MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfval Structured version   Visualization version   GIF version

Theorem grpinvfval 18928
Description: The inverse function of a group. For a shorter proof using ax-rep 5279, see grpinvfvalALT 18929. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) Remove dependency on ax-rep 5279. (Revised by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
grpinvval.b 𝐵 = (Base‘𝐺)
grpinvval.p + = (+g𝐺)
grpinvval.o 0 = (0g𝐺)
grpinvval.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfval 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥, 0   𝑥, +
Allowed substitution hints:   + (𝑦)   𝑁(𝑥,𝑦)   0 (𝑦)

Proof of Theorem grpinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvval.n . 2 𝑁 = (invg𝐺)
2 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpinvval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6891 . . . . . . . . 9 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpinvval.p . . . . . . . . 9 + = (+g𝐺)
75, 6eqtr4di 2786 . . . . . . . 8 (𝑔 = 𝐺 → (+g𝑔) = + )
87oveqd 7431 . . . . . . 7 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
9 fveq2 6891 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 grpinvval.o . . . . . . . 8 0 = (0g𝐺)
119, 10eqtr4di 2786 . . . . . . 7 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2744 . . . . . 6 (𝑔 = 𝐺 → ((𝑦(+g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 + 𝑥) = 0 ))
134, 12riotaeqbidv 7373 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔)) = (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
144, 13mpteq12dv 5233 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
15 df-minusg 18887 . . . 4 invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑦 ∈ (Base‘𝑔)(𝑦(+g𝑔)𝑥) = (0g𝑔))))
163fvexi 6905 . . . . 5 𝐵 ∈ V
17 p0ex 5378 . . . . . 6 {∅} ∈ V
1817, 16unex 7742 . . . . 5 ({∅} ∪ 𝐵) ∈ V
19 ssun2 4169 . . . . . . . 8 𝐵 ⊆ ({∅} ∪ 𝐵)
20 riotacl 7388 . . . . . . . 8 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ 𝐵)
2119, 20sselid 3976 . . . . . . 7 (∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
22 ssun1 4168 . . . . . . . 8 {∅} ⊆ ({∅} ∪ 𝐵)
23 riotaund 7410 . . . . . . . . 9 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
24 riotaex 7374 . . . . . . . . . 10 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ V
2524elsn 4639 . . . . . . . . 9 ((𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅} ↔ (𝑦𝐵 (𝑦 + 𝑥) = 0 ) = ∅)
2623, 25sylibr 233 . . . . . . . 8 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ {∅})
2722, 26sselid 3976 . . . . . . 7 (¬ ∃!𝑦𝐵 (𝑦 + 𝑥) = 0 → (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵))
2821, 27pm2.61i 182 . . . . . 6 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
2928rgenw 3061 . . . . 5 𝑥𝐵 (𝑦𝐵 (𝑦 + 𝑥) = 0 ) ∈ ({∅} ∪ 𝐵)
3016, 18, 29mptexw 7950 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) ∈ V
3114, 15, 30fvmpt 6999 . . 3 (𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
32 fvprc 6883 . . . . 5 𝐺 ∈ V → (invg𝐺) = ∅)
33 mpt0 6691 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = ∅
3432, 33eqtr4di 2786 . . . 4 𝐺 ∈ V → (invg𝐺) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
35 fvprc 6883 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
363, 35eqtrid 2780 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
3736mpteq1d 5237 . . . 4 𝐺 ∈ V → (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3834, 37eqtr4d 2771 . . 3 𝐺 ∈ V → (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 )))
3931, 38pm2.61i 182 . 2 (invg𝐺) = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
401, 39eqtri 2756 1 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦 + 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  ∃!wreu 3370  Vcvv 3470  cun 3943  c0 4318  {csn 4624  cmpt 5225  cfv 6542  crio 7369  (class class class)co 7414  Basecbs 17173  +gcplusg 17226  0gc0g 17414  invgcminusg 18884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7370  df-ov 7417  df-minusg 18887
This theorem is referenced by:  grpinvval  18930  grpinvfn  18931  grpinvf  18936  grpinvpropd  18964  opprneg  20283
  Copyright terms: Public domain W3C validator
OSZAR »