Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqbidf Structured version   Visualization version   GIF version

Theorem sbceqbidf 32330
Description: Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
Hypotheses
Ref Expression
sbceqbidf.1 𝑥𝜑
sbceqbidf.2 (𝜑𝐴 = 𝐵)
sbceqbidf.3 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbceqbidf (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))

Proof of Theorem sbceqbidf
StepHypRef Expression
1 sbceqbidf.2 . . 3 (𝜑𝐴 = 𝐵)
2 sbceqbidf.1 . . . 4 𝑥𝜑
3 sbceqbidf.3 . . . 4 (𝜑 → (𝜓𝜒))
42, 3abbid 2796 . . 3 (𝜑 → {𝑥𝜓} = {𝑥𝜒})
51, 4eleq12d 2819 . 2 (𝜑 → (𝐴 ∈ {𝑥𝜓} ↔ 𝐵 ∈ {𝑥𝜒}))
6 df-sbc 3769 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ {𝑥𝜓})
7 df-sbc 3769 . 2 ([𝐵 / 𝑥]𝜒𝐵 ∈ {𝑥𝜒})
85, 6, 73bitr4g 313 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wnf 1777  wcel 2098  {cab 2702  [wsbc 3768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-sbc 3769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »