Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcies Structured version   Visualization version   GIF version

Theorem sbcies 32304
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
sbcies.a 𝐴 = (𝐸𝑊)
sbcies.1 (𝑎 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcies (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎]𝜓𝜑))
Distinct variable groups:   𝑤,𝑎   𝐸,𝑎   𝑊,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑤,𝑎)   𝐴(𝑤,𝑎)   𝐸(𝑤)   𝑊(𝑤)

Proof of Theorem sbcies
StepHypRef Expression
1 fvexd 6915 . 2 (𝑤 = 𝑊 → (𝐸𝑤) ∈ V)
2 simpr 483 . . . . 5 ((𝑤 = 𝑊𝑎 = (𝐸𝑤)) → 𝑎 = (𝐸𝑤))
3 sbcies.a . . . . . . 7 𝐴 = (𝐸𝑊)
4 fveq2 6900 . . . . . . 7 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
53, 4eqtr4id 2786 . . . . . 6 (𝑤 = 𝑊𝐴 = (𝐸𝑤))
65adantr 479 . . . . 5 ((𝑤 = 𝑊𝑎 = (𝐸𝑤)) → 𝐴 = (𝐸𝑤))
72, 6eqtr4d 2770 . . . 4 ((𝑤 = 𝑊𝑎 = (𝐸𝑤)) → 𝑎 = 𝐴)
8 sbcies.1 . . . 4 (𝑎 = 𝐴 → (𝜑𝜓))
97, 8syl 17 . . 3 ((𝑤 = 𝑊𝑎 = (𝐸𝑤)) → (𝜑𝜓))
109bicomd 222 . 2 ((𝑤 = 𝑊𝑎 = (𝐸𝑤)) → (𝜓𝜑))
111, 10sbcied 3822 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎]𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  Vcvv 3471  [wsbc 3776  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-nul 5308
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-rab 3429  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-iota 6503  df-fv 6559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »