![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 769 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr1 1185 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: poxp2 8146 poxp3 8153 oppccatid 17701 subccatid 17832 setccatid 18073 catccatid 18095 estrccatid 18122 xpccatid 18179 gsmsymgreqlem1 19393 dmdprdsplit 20012 neiptopnei 23073 neitr 23121 neitx 23548 tx1stc 23591 utop3cls 24193 metustsym 24501 ax5seg 28812 clwwlkccat 29863 3pthdlem1 30037 esumpcvgval 33784 esum2d 33799 ifscgr 35727 brofs2 35760 brifs2 35761 btwnconn1lem8 35777 btwnconn1lem12 35781 seglecgr12im 35793 unbdqndv2 36073 lhp2lt 39560 cdlemd1 39757 cdleme3b 39788 cdleme3c 39789 cdleme3e 39791 cdlemf2 40121 cdlemg4c 40171 cdlemn11pre 40769 dihmeetlem12N 40877 stoweidlem60 45528 isthincd2 48172 mndtccatid 48227 |
Copyright terms: Public domain | W3C validator |