MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr1r Structured version   Visualization version   GIF version

Theorem simpr1r 1228
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr1r ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simpr1r
StepHypRef Expression
1 simprr 771 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr1 1185 1 ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  poxp2  8146  oppccatid  17701  subccatid  17832  setccatid  18073  catccatid  18095  estrccatid  18122  xpccatid  18179  gsmsymgreqlem1  19390  dmdprdsplit  20009  neitr  23115  neitx  23542  tx1stc  23585  utop3cls  24187  metustsym  24495  clwwlkccat  29857  3pthdlem1  30031  archiabllem1  32969  esumpcvgval  33784  esum2d  33799  ifscgr  35727  btwnconn1lem8  35777  btwnconn1lem11  35780  btwnconn1lem12  35781  segletr  35797  broutsideof3  35809  unbdqndv2  36073  lhp2lt  39560  cdlemf2  40121  cdlemn11pre  40769  stoweidlem60  45528  isthincd2  48172  mndtccatid  48227
  Copyright terms: Public domain W3C validator
OSZAR »