![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > son2lpi | Structured version Visualization version GIF version |
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
son2lpi | ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soi.1 | . . 3 ⊢ 𝑅 Or 𝑆 | |
2 | soi.2 | . . 3 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
3 | 1, 2 | soirri 6133 | . 2 ⊢ ¬ 𝐴𝑅𝐴 |
4 | 1, 2 | sotri 6134 | . 2 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) → 𝐴𝑅𝐴) |
5 | 3, 4 | mto 196 | 1 ⊢ ¬ (𝐴𝑅𝐵 ∧ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 ⊆ wss 3944 class class class wbr 5149 Or wor 5589 × cxp 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-po 5590 df-so 5591 df-xp 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |