![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srgmgp | Structured version Visualization version GIF version |
Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
Ref | Expression |
---|---|
srgmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
srgmgp | ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | srgmgp.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | eqid 2728 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | eqid 2728 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | eqid 2728 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
6 | 1, 2, 3, 4, 5 | issrg 20128 | . 2 ⊢ (𝑅 ∈ SRing ↔ (𝑅 ∈ CMnd ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)(∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) ∧ (((0g‘𝑅)(.r‘𝑅)𝑥) = (0g‘𝑅) ∧ (𝑥(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅))))) |
7 | 6 | simp2bi 1144 | 1 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 .rcmulr 17234 0gc0g 17421 Mndcmnd 18694 CMndccmn 19735 mulGrpcmgp 20074 SRingcsrg 20126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-srg 20127 |
This theorem is referenced by: srgcl 20133 srgass 20134 srgideu 20135 srgidcl 20139 srgidmlem 20141 srg1zr 20155 srgpcomp 20158 srgpcompp 20159 srgpcomppsc 20160 srg1expzeq1 20165 srgbinomlem1 20166 srgbinomlem4 20169 srgbinomlem 20170 |
Copyright terms: Public domain | W3C validator |