![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3955 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1814 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3965 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4340 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 ⊆ wss 3945 ∅c0 4319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-dif 3948 df-in 3952 df-ss 3962 df-nul 4320 |
This theorem is referenced by: difn0 4361 pssdifn0 4362 difidALT 4368 vdif0 4465 difrab0eq 4466 difin0 4470 symdifv 5084 frpoind 6343 wfiOLD 6352 ordintdif 6414 dffv2 6988 fndifnfp 7180 tfi 7852 peano5 7894 peano5OLD 7895 frrlem13 8298 frrlem14 8299 wfrlem8OLD 8331 wfrlem16OLD 8339 tz7.49 8460 oe0m1 8536 sucdom2OLD 9101 sdomdif 9144 sucdom2 9225 php3 9231 php3OLD 9243 isinf 9279 isinfOLD 9280 unxpwdom2 9606 frind 9768 fin23lem26 10343 fin23lem21 10357 fin1a2lem13 10430 zornn0g 10523 fpwwe2lem12 10660 fpwwe2 10661 isumltss 15821 rpnnen2lem12 16196 symgsssg 19416 symgfisg 19417 psgnunilem5 19443 lspsnat 21027 lsppratlem6 21034 lspprat 21035 lbsextlem4 21043 cnsubrg 21354 opsrtoslem2 21994 psdmullem 22083 0ntr 22969 cmpfi 23306 dfconn2 23317 filconn 23781 cfinfil 23791 ufileu 23817 alexsublem 23942 ptcmplem2 23951 ptcmplem3 23952 restmetu 24473 reconnlem1 24736 bcthlem5 25250 itg10 25611 limcnlp 25801 noextendseq 27594 sltlpss 27827 upgrex 28899 uvtx01vtx 29204 ex-dif 30227 strlem1 32054 difininv 32307 eqdif 32310 difioo 32545 pmtrcnelor 32809 baselcarsg 33921 difelcarsg 33925 sibfof 33955 sitg0 33961 chtvalz 34256 onsucconni 35916 topdifinfeq 36824 nlpineqsn 36882 fdc 37213 setindtr 42436 oe0rif 42705 cantnfresb 42744 relnonrel 43008 inaex 43725 caragenunidm 45887 |
Copyright terms: Public domain | W3C validator |