![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdif | Structured version Visualization version GIF version |
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.) |
Ref | Expression |
---|---|
sdomdif | ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8965 | . . . . . 6 ⊢ Rel ≺ | |
2 | 1 | brrelex1i 5729 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
3 | ssdif0 4360 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
4 | ssdomg 9015 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
5 | domnsym 9118 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → ¬ 𝐴 ≺ 𝐵)) |
7 | 3, 6 | biimtrrid 242 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
9 | 8 | con2d 134 | . . 3 ⊢ (𝐴 ≺ 𝐵 → (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅)) |
10 | 9 | pm2.43i 52 | . 2 ⊢ (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅) |
11 | 10 | neqned 2943 | 1 ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∖ cdif 3942 ⊆ wss 3945 ∅c0 4319 class class class wbr 5143 ≼ cdom 8956 ≺ csdm 8957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 |
This theorem is referenced by: domtriomlem 10460 konigthlem 10586 odcau 19553 |
Copyright terms: Public domain | W3C validator |