![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4135. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4135 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3942 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-dif 3948 df-in 3952 df-ss 3962 |
This theorem is referenced by: ssdif2d 4139 domunsncan 9090 fin1a2lem13 10429 seqcoll2 14452 rpnnen2lem11 16194 coprmprod 16625 mrieqv2d 17612 mrissmrid 17614 mreexexlem4d 17620 acsfiindd 18538 subdrgint 20684 lsppratlem3 21030 lsppratlem4 21031 f1lindf 21749 lpss3 23041 lpcls 23261 fin1aufil 23829 rrxmval 25326 rrxmetlem 25328 uniioombllem3 25507 i1fmul 25618 itg1addlem4 25621 itg1addlem4OLD 25622 itg1climres 25637 limciun 25816 ig1peu 26102 ig1pdvds 26107 fusgreghash2wspv 30138 pmtrcnel2 32807 pmtrcnelor 32808 tocyccntz 32859 elrspunidl 33138 elrspunsn 33139 indsumin 33635 sitgclg 33956 mthmpps 35186 poimirlem11 37098 poimirlem12 37099 poimirlem15 37102 dochfln0 40944 lcfl6 40967 lcfrlem16 41025 hdmaprnlem4N 41320 tfsconcatlem 42759 caragendifcl 45896 |
Copyright terms: Public domain | W3C validator |