Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsumin Structured version   Visualization version   GIF version

Theorem indsumin 33641
Description: Finite sum of a product with the indicator function / Cartesian product with the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
indsumin.1 (𝜑𝑂𝑉)
indsumin.2 (𝜑𝐴 ∈ Fin)
indsumin.3 (𝜑𝐴𝑂)
indsumin.4 (𝜑𝐵𝑂)
indsumin.5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
indsumin (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑂   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem indsumin
StepHypRef Expression
1 inindif 32325 . . . 4 ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅
21a1i 11 . . 3 (𝜑 → ((𝐴𝐵) ∩ (𝐴𝐵)) = ∅)
3 inundif 4479 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
43eqcomi 2737 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
54a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
6 indsumin.2 . . 3 (𝜑𝐴 ∈ Fin)
7 pr01ssre 32600 . . . . . 6 {0, 1} ⊆ ℝ
8 ax-resscn 11196 . . . . . 6 ℝ ⊆ ℂ
97, 8sstri 3989 . . . . 5 {0, 1} ⊆ ℂ
10 indsumin.1 . . . . . . . 8 (𝜑𝑂𝑉)
11 indsumin.4 . . . . . . . 8 (𝜑𝐵𝑂)
12 indf 33634 . . . . . . . 8 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1310, 11, 12syl2anc 583 . . . . . . 7 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
1413adantr 480 . . . . . 6 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
15 indsumin.3 . . . . . . 7 (𝜑𝐴𝑂)
1615sselda 3980 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑂)
1714, 16ffvelcdmd 7095 . . . . 5 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ {0, 1})
189, 17sselid 3978 . . . 4 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘𝑘) ∈ ℂ)
19 indsumin.5 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2018, 19mulcld 11265 . . 3 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) ∈ ℂ)
212, 5, 6, 20fsumsplit 15720 . 2 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)))
2210adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
2311adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
24 inss2 4230 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
2524a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
2625sselda 3980 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐵)
27 ind1 33636 . . . . . . 7 ((𝑂𝑉𝐵𝑂𝑘𝐵) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2822, 23, 26, 27syl3anc 1369 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 1)
2928oveq1d 7435 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (1 · 𝐶))
30 inss1 4229 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
3130a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3231sselda 3980 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
3332, 19syldan 590 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
3433mullidd 11263 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → (1 · 𝐶) = 𝐶)
3529, 34eqtrd 2768 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 𝐶)
3635sumeq2dv 15682 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
3710adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑂𝑉)
3811adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐵𝑂)
3915ssdifd 4139 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ (𝑂𝐵))
4039sselda 3980 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘 ∈ (𝑂𝐵))
41 ind0 33637 . . . . . . . 8 ((𝑂𝑉𝐵𝑂𝑘 ∈ (𝑂𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4237, 38, 40, 41syl3anc 1369 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → (((𝟭‘𝑂)‘𝐵)‘𝑘) = 0)
4342oveq1d 7435 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = (0 · 𝐶))
44 difssd 4131 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
4544sselda 3980 . . . . . . . 8 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
4645, 19syldan 590 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
4746mul02d 11443 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → (0 · 𝐶) = 0)
4843, 47eqtrd 2768 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
4948sumeq2dv 15682 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)0)
50 diffi 9204 . . . . . 6 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
516, 50syl 17 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
52 sumz 15701 . . . . . 6 (((𝐴𝐵) ⊆ (ℤ‘0) ∨ (𝐴𝐵) ∈ Fin) → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5352olcs 875 . . . . 5 ((𝐴𝐵) ∈ Fin → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5451, 53syl 17 . . . 4 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)0 = 0)
5549, 54eqtrd 2768 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = 0)
5636, 55oveq12d 7438 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) + Σ𝑘 ∈ (𝐴𝐵)((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶)) = (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0))
57 infi 9293 . . . . 5 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
586, 57syl 17 . . . 4 (𝜑 → (𝐴𝐵) ∈ Fin)
5958, 33fsumcl 15712 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
6059addridd 11445 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴𝐵)𝐶 + 0) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
6121, 56, 603eqtrd 2772 1 (𝜑 → Σ𝑘𝐴 ((((𝟭‘𝑂)‘𝐵)‘𝑘) · 𝐶) = Σ𝑘 ∈ (𝐴𝐵)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4323  {cpr 4631  wf 6544  cfv 6548  (class class class)co 7420  Fincfn 8964  cc 11137  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   · cmul 11144  cuz 12853  Σcsu 15665  𝟭cind 33629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666  df-ind 33630
This theorem is referenced by:  breprexpnat  34266
  Copyright terms: Public domain W3C validator
OSZAR »