![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 604 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 602 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anim12d 608 ax7 2012 dffi3 9448 cflim2 10280 axpre-sup 11186 xle2add 13264 fzen 13544 rpmulgcd2 16620 pcqmul 16815 sbcie2s 17123 initoeu1 17993 termoeu1 18000 plttr 18327 pospo 18330 lublecllem 18345 latjlej12 18440 latmlem12 18456 hausnei2 23250 uncmp 23300 itgsubst 25977 mpodvdsmulf1o 27119 dvdsmulf1o 27121 2sqlem8a 27351 precsexlem10 28107 axcontlem9 28776 uspgr2wlkeq 29453 shintcli 31132 cvntr 32095 cdj3i 32244 f1resrcmplf1dlem 34703 satffunlem 35005 bj-bary1 36785 heicant 37122 itg2addnc 37141 dihmeetlem1N 40757 fmtnofac2lem 46902 2itscp 47848 mofsn 47890 |
Copyright terms: Public domain | W3C validator |