![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plttr | Structured version Visualization version GIF version |
Description: The less-than relation is transitive. (psstr 4100 analog.) (Contributed by NM, 2-Dec-2011.) |
Ref | Expression |
---|---|
pltnlt.b | ⊢ 𝐵 = (Base‘𝐾) |
pltnlt.s | ⊢ < = (lt‘𝐾) |
Ref | Expression |
---|---|
plttr | ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | pltnlt.s | . . . . . 6 ⊢ < = (lt‘𝐾) | |
3 | 1, 2 | pltle 18318 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
4 | 3 | 3adant3r3 1182 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑌 → 𝑋(le‘𝐾)𝑌)) |
5 | 1, 2 | pltle 18318 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
6 | 5 | 3adant3r1 1180 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 < 𝑍 → 𝑌(le‘𝐾)𝑍)) |
7 | pltnlt.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 7, 1 | postr 18305 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍)) |
9 | 4, 6, 8 | syl2and 607 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍)) |
10 | 7, 2 | pltn2lp 18326 | . . . . . 6 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
11 | 10 | 3adant3r3 1182 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋)) |
12 | breq2 5146 | . . . . . . 7 ⊢ (𝑋 = 𝑍 → (𝑌 < 𝑋 ↔ 𝑌 < 𝑍)) | |
13 | 12 | anbi2d 629 | . . . . . 6 ⊢ (𝑋 = 𝑍 → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
14 | 13 | notbid 318 | . . . . 5 ⊢ (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
15 | 11, 14 | syl5ibcom 244 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
16 | 15 | necon2ad 2951 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 ≠ 𝑍)) |
17 | 9, 16 | jcad 512 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
18 | 1, 2 | pltval 18317 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
19 | 18 | 3adant3r2 1181 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍 ∧ 𝑋 ≠ 𝑍))) |
20 | 17, 19 | sylibrd 259 | 1 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → 𝑋 < 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 class class class wbr 5142 ‘cfv 6542 Basecbs 17173 lecple 17233 Posetcpo 18292 ltcplt 18293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-proset 18280 df-poset 18298 df-plt 18315 |
This theorem is referenced by: pltletr 18328 plelttr 18329 pospo 18330 archiabllem2c 32897 ofldchr 33023 hlhgt2 38856 hl0lt1N 38857 lhp0lt 39470 |
Copyright terms: Public domain | W3C validator |