![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdrgunit | Structured version Visualization version GIF version |
Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
istrg.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
istdrg.1 | ⊢ 𝑈 = (Unit‘𝑅) |
Ref | Expression |
---|---|
tdrgunit | ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrg.1 | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | istdrg.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | istdrg 24083 | . 2 ⊢ (𝑅 ∈ TopDRing ↔ (𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ (𝑀 ↾s 𝑈) ∈ TopGrp)) |
4 | 3 | simp3bi 1145 | 1 ⊢ (𝑅 ∈ TopDRing → (𝑀 ↾s 𝑈) ∈ TopGrp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ↾s cress 17209 mulGrpcmgp 20074 Unitcui 20294 DivRingcdr 20624 TopGrpctgp 23988 TopRingctrg 24073 TopDRingctdrg 24074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6500 df-fv 6556 df-ov 7423 df-tdrg 24078 |
This theorem is referenced by: invrcn2 24097 |
Copyright terms: Public domain | W3C validator |