![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgcgrcomr | Structured version Visualization version GIF version |
Description: Congruence commutes on the RHS. Variant of Theorem 2.5 of [Schwabhauser] p. 27, but in a convenient form for a common case. (Contributed by David A. Wheeler, 29-Jun-2020.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrcomr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrcomr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrcomr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrcomr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrcomr.6 | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) |
Ref | Expression |
---|---|
tgcgrcomr | ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgcgrcomr.6 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐶 − 𝐷)) | |
2 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
4 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tkgeom.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tgcgrcomr.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | tgcgrcomr.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | 2, 3, 4, 5, 6, 7 | axtgcgrrflx 28329 | . 2 ⊢ (𝜑 → (𝐶 − 𝐷) = (𝐷 − 𝐶)) |
9 | 1, 8 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 distcds 17242 TarskiGcstrkg 28294 Itvcitv 28300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6499 df-fv 6555 df-ov 7420 df-trkgc 28315 df-trkg 28320 |
This theorem is referenced by: tgbtwnconn1lem1 28439 dfcgra2 28697 |
Copyright terms: Public domain | W3C validator |