![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgsegconeq | Structured version Visualization version GIF version |
Description: Two points that satisfy the conclusion of axtgsegcon 28325 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
Ref | Expression |
---|---|
tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
tkgeom.d | ⊢ − = (dist‘𝐺) |
tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tgcgrextend.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
tgcgrextend.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
tgcgrextend.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
tgcgrextend.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
tgcgrextend.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
tgcgrextend.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
tgsegconeq.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
tgsegconeq.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) |
tgsegconeq.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) |
tgsegconeq.4 | ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) |
tgsegconeq.5 | ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) |
Ref | Expression |
---|---|
tgsegconeq | ⊢ (𝜑 → 𝐸 = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tgcgrextend.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
6 | tgcgrextend.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
7 | tgcgrextend.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
8 | tgcgrextend.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | tgsegconeq.1 | . . . 4 ⊢ (𝜑 → 𝐷 ≠ 𝐴) | |
10 | tgsegconeq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | |
11 | eqidd 2726 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐴) = (𝐷 − 𝐴)) | |
12 | eqidd 2726 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐸)) | |
13 | tgsegconeq.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | |
14 | tgsegconeq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | |
15 | tgsegconeq.5 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | |
16 | 14, 15 | eqtr4d 2768 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐹)) |
17 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16 | tgcgrextend 28346 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐸) = (𝐷 − 𝐹)) |
18 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16 | axtg5seg 28326 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐸) = (𝐸 − 𝐹)) |
19 | 18 | eqcomd 2731 | . 2 ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐸 − 𝐸)) |
20 | 1, 2, 3, 4, 5, 6, 5, 19 | axtgcgrid 28324 | 1 ⊢ (𝜑 → 𝐸 = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 ‘cfv 6547 (class class class)co 7417 Basecbs 17180 distcds 17242 TarskiGcstrkg 28288 Itvcitv 28294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-iota 6499 df-fv 6555 df-ov 7420 df-trkgc 28309 df-trkgcb 28311 df-trkg 28314 |
This theorem is referenced by: tgbtwnouttr2 28356 tgcgrxfr 28379 tgbtwnconn1lem1 28433 hlcgreulem 28478 mirreu3 28515 |
Copyright terms: Public domain | W3C validator |