MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tleile Structured version   Visualization version   GIF version

Theorem tleile 18446
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
tleile.b 𝐵 = (Base‘𝐾)
tleile.l = (le‘𝐾)
Assertion
Ref Expression
tleile ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))

Proof of Theorem tleile
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2 simp3 1135 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
3 tleile.b . . . . 5 𝐵 = (Base‘𝐾)
4 tleile.l . . . . 5 = (le‘𝐾)
53, 4istos 18443 . . . 4 (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)))
65simprbi 495 . . 3 (𝐾 ∈ Toset → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
763ad2ant1 1130 . 2 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥))
8 breq1 5156 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 breq2 5157 . . . 4 (𝑥 = 𝑋 → (𝑦 𝑥𝑦 𝑋))
108, 9orbi12d 916 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑋 𝑦𝑦 𝑋)))
11 breq2 5157 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
12 breq1 5156 . . . 4 (𝑦 = 𝑌 → (𝑦 𝑋𝑌 𝑋))
1311, 12orbi12d 916 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑋) ↔ (𝑋 𝑌𝑌 𝑋)))
1410, 13rspc2va 3620 . 2 (((𝑋𝐵𝑌𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 𝑥)) → (𝑋 𝑌𝑌 𝑋))
151, 2, 7, 14syl21anc 836 1 ((𝐾 ∈ Toset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5153  cfv 6554  Basecbs 17213  lecple 17273  Posetcpo 18332  Tosetctos 18441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-nul 5311
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-iota 6506  df-fv 6562  df-toset 18442
This theorem is referenced by:  tltnle  18447  odutos  32838  trleile  32841  toslat  48308
  Copyright terms: Public domain W3C validator
OSZAR »