![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tleile | Structured version Visualization version GIF version |
Description: In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
tleile.b | ⊢ 𝐵 = (Base‘𝐾) |
tleile.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
tleile | ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
2 | simp3 1135 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
3 | tleile.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | tleile.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | istos 18443 | . . . 4 ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) |
6 | 5 | simprbi 495 | . . 3 ⊢ (𝐾 ∈ Toset → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
7 | 6 | 3ad2ant1 1130 | . 2 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) |
8 | breq1 5156 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
9 | breq2 5157 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑋)) | |
10 | 8, 9 | orbi12d 916 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥) ↔ (𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋))) |
11 | breq2 5157 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
12 | breq1 5156 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
13 | 11, 12 | orbi12d 916 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∨ 𝑦 ≤ 𝑋) ↔ (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋))) |
14 | 10, 13 | rspc2va 3620 | . 2 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥)) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
15 | 1, 2, 7, 14 | syl21anc 836 | 1 ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 class class class wbr 5153 ‘cfv 6554 Basecbs 17213 lecple 17273 Posetcpo 18332 Tosetctos 18441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5311 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-iota 6506 df-fv 6562 df-toset 18442 |
This theorem is referenced by: tltnle 18447 odutos 32838 trleile 32841 toslat 48308 |
Copyright terms: Public domain | W3C validator |