MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid3 Structured version   Visualization version   GIF version

Theorem tpid3 4782
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 30-Apr-2021.)
Hypothesis
Ref Expression
tpid3.1 𝐶 ∈ V
Assertion
Ref Expression
tpid3 𝐶 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid3
StepHypRef Expression
1 tpid3.1 . 2 𝐶 ∈ V
2 tpid3g 4781 . 2 (𝐶 ∈ V → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
31, 2ax-mp 5 1 𝐶 ∈ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3473  {ctp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3475  df-un 3954  df-sn 4633  df-pr 4635  df-tp 4637
This theorem is referenced by:  wrdl3s3  14953  umgrwwlks2on  29788  ex-pss  30258  s3rn  32690  cyc3evpm  32892  sgnsf  32904  sgncl  34191  prodfzo03  34268  circlevma  34307  circlemethhgt  34308  hgt750lemg  34319  hgt750lemb  34321  hgt750lema  34322  hgt750leme  34323  tgoldbachgtde  34325  tgoldbachgt  34328  kur14lem7  34855  brtpid3  35350  rabren3dioph  42266  oenord1ex  42775  fourierdlem114  45637
  Copyright terms: Public domain W3C validator
OSZAR »