![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2130, ax-11 2147, ax-12 2167, ax-un 7735. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8488 | . 2 ⊢ 1o = {∅} | |
2 | snex 5428 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2825 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3470 ∅c0 4319 {csn 4625 1oc1o 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-dif 3948 df-un 3950 df-nul 4320 df-sn 4626 df-pr 4628 df-suc 6370 df-1o 8481 |
This theorem is referenced by: 1on 8493 2oexOLD 8502 nlim2 8505 oev 8529 oe0 8537 oev2 8538 oneo 8596 nnneo 8670 enpr2d 9068 endisj 9077 map2xp 9166 snnen2o 9256 sdom1 9261 sdom1OLD 9262 rex2dom 9265 1sdom2dom 9266 1sdomOLD 9268 ssttrcl 9733 ttrclselem2 9744 djuexb 9927 djurcl 9929 djurf1o 9931 djuss 9938 djuun 9944 1stinr 9947 2ndinr 9948 pm54.43 10019 dju1dif 10190 djucomen 10195 djuassen 10196 infdju1 10207 pwdju1 10208 nnadju 10215 infmap2 10236 cfsuc 10275 isfin4p1 10333 dcomex 10465 pwcfsdom 10601 cfpwsdom 10602 canthp1lem2 10671 pwxpndom2 10683 indpi 10925 pinq 10945 archnq 10998 sadcf 16422 sadcp1 16424 fnpr2ob 17534 xpsfrnel 17538 xpsle 17555 setcepi 18071 setc2obas 18077 setc2ohom 18078 efgi1 19670 frgpuptinv 19720 dmdprdpr 20000 dprdpr 20001 coe1fval3 22121 00ply1bas 22152 ply1plusgfvi 22154 coe1z 22176 coe1tm 22186 xpstopnlem1 23707 xpstopnlem2 23709 xpsdsval 24281 nofv 27584 noxp1o 27590 noextendlt 27596 bdayfo 27604 nosep1o 27608 nosepdmlem 27610 nolt02o 27622 nogt01o 27623 nosupbnd1lem5 27639 nosupbnd2lem1 27642 noinfno 27645 noinfbday 27647 noinfbnd1 27656 noinfbnd2lem1 27657 noinfbnd2 27658 noetasuplem1 27660 noetasuplem2 27661 noetasuplem4 27663 fply1 33228 gonanegoal 34957 fmlaomn0 34995 gonan0 34997 gonarlem 34999 gonar 35000 fmlasucdisj 35004 satffunlem 35006 satffunlem2lem1 35009 ex-sategoelel12 35032 rankeq1o 35762 bj-pr2val 36492 bj-2upln1upl 36498 pw2f1ocnv 42449 omnord1ex 42724 oege2 42727 oenord1ex 42735 oenord1 42736 oaomoencom 42737 oenassex 42738 cantnfresb 42744 omcl3g 42754 clsk3nimkb 43461 clsk1indlem4 43465 clsk1indlem1 43466 f1omo 47904 f1omoALT 47905 indthinc 48049 indthincALT 48050 prsthinc 48051 prstchom 48074 prstchom2ALT 48076 |
Copyright terms: Public domain | W3C validator |