![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version |
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5146 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1o〉 ~Q 𝑦)) | |
2 | fveq2 6892 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1o〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1o〉)) | |
3 | 2 | breq2d 5155 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1o〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
5 | 1, 4 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1o〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
6 | 5 | ralbidv 3173 | . . 3 ⊢ (𝑥 = 〈𝐴, 1o〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)))) |
7 | 1pi 10901 | . . . 4 ⊢ 1o ∈ N | |
8 | opelxpi 5710 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → 〈𝐴, 1o〉 ∈ (N × N)) | |
9 | 7, 8 | mpan2 690 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ (N × N)) |
10 | nlt1pi 10924 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1o | |
11 | 1oex 8491 | . . . . . . . 8 ⊢ 1o ∈ V | |
12 | op2ndg 8001 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1o ∈ V) → (2nd ‘〈𝐴, 1o〉) = 1o) | |
13 | 11, 12 | mpan2 690 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1o〉) = 1o) |
14 | 13 | breq2d 5155 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉) ↔ (2nd ‘𝑦) <N 1o)) |
15 | 10, 14 | mtbiri 327 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉)) |
16 | 15 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
17 | 16 | ralrimivw 3146 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1o〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1o〉))) |
18 | 6, 9, 17 | elrabd 3683 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
19 | df-nq 10930 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
20 | 18, 19 | eleqtrrdi 2840 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3057 {crab 3428 Vcvv 3470 〈cop 4631 class class class wbr 5143 × cxp 5671 ‘cfv 6543 2nd c2nd 7987 1oc1o 8474 Ncnpi 10862 <N clti 10865 ~Q ceq 10869 Qcnq 10870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fv 6551 df-om 7866 df-2nd 7989 df-1o 8481 df-ni 10890 df-lti 10893 df-nq 10930 |
This theorem is referenced by: 1nq 10946 archnq 10998 prlem934 11051 |
Copyright terms: Public domain | W3C validator |