MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1440
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 608 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 608 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1087 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  pofun  5603  isopolem  7348  issmo2  8364  smores  8367  inawina  10708  gchina  10717  repswcshw  14789  coprmprod  16626  issubmnd  18715  issubg2  19090  issubrng2  20489  issubrg2  20525  rnglidlmsgrp  21135  rnglidlrng  21136  ocv2ss  21599  issubassa3  21793  sslm  23197  cmetcaulem  25210  axcontlem4  28772  axcontlem8  28776  redwlk  29480  clwwlknwwlksn  29842  numclwwlk1lem2foa  30158  dipsubdir  30652  subgrpth  34739  cgr3tr4  35643  idinside  35675  ftc1anclem7  37167  fzmul  37209  fdc1  37214  rngosubdi  37413  rngosubdir  37414  cdlemg33a  40174  upwlkwlk  47192
  Copyright terms: Public domain W3C validator
OSZAR »